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Abstract 

Forest fires have become an increasingly pressing global issue, causing severe environmental, 

economic, and social consequences. Factors such as climate change, deforestation, and extreme 

weather conditions have contributed to the growing frequency and intensity of these fires, underscoring 

the importance of early detection and prevention. Traditional forest fire prediction methods, which 

primarily rely on meteorological data and historical fire patterns, often fall short in terms of accuracy 

and response speed, limiting their effectiveness in disaster management. Deep Learning (DL), a subset 

of artificial intelligence, has emerged as a powerful approach for accurately predicting forest fires. In 

this paper, DL is integrated with Decision Trees (DT) to harness the complementary strengths of both 

techniques. Convolutional Neural Networks (CNNs) are employed to analyze satellite imagery and 

identify high-risk areas, while DTs assist in generating accurate fire outbreak predictions. By 

leveraging large volumes of real-time data, the proposed method can detect subtle patterns that 

traditional approaches may overlook, enabling more precise and timely forecasts. The main 

contribution of this study is the introduction of a Hybrid Forest Fire Forecasting Strategy (HF2S), 

which combines the predictive capabilities of CNN and DT models. Specifically, the VGG16 

architecture is used for feature extraction from satellite images, followed by Gray Wolf Optimization 

(GWO) to select the most relevant features. These selected features are then input into two separate 

binary classifiers: (i) a Deep Learning Classifier (DLC) based on transfer learning with VGG16, and 

(ii) a Decision Tree Classifier (DTC). The outputs of both classifiers are combined to generate the final 

prediction. A comprehensive dataset, compiled from various publicly available sources, was used to 

evaluate the proposed model. Experimental results demonstrate that the HF2S approach outperforms 

other state-of-the-art models in terms of accuracy, precision, F-measure, recall, error rate, and 

processing time. The highest achieved accuracy is approximately 88%, based on a training set of 12,000 

images. 
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1. Introduction 
Forest fires possess immense destructive potential, often causing long-term ecological damage that is 

difficult to reverse. The regeneration of forest ecosystems after such disturbances is a slow and complex 

process. Therefore, effective prevention strategies are essential to reduce both the frequency and severity of 

these events [1]. Forests play a crucial role in maintaining environmental stability through various ecological 

functions, including oxygen production, climate regulation, water conservation, soil stabilization, wind 

erosion control, air purification, noise reduction, and public health enhancement. They also serve as critical 

sources of timber and other forest products that support national development and human livelihoods [2]. 

Furthermore, forests underpin sustainable agricultural practices and livestock production, underscoring their 

indispensable ecological, social, and economic significance to human survival [3,4]. The persistent and 

escalating threat of forest fires driven by climate change, land-use changes, and the expansion of human 

settlements into forested areas demands the development of high-precision fire prediction technologies. As 

a result, designing robust forecasting models and conducting comprehensive wildfire hazard assessments 

have become urgent research priorities [5,6].  

 

Traditional fire detection methods primarily rely on satellite-based remote sensing, aerial surveillance, and 

ground-based monitoring systems, such as lookout towers, wireless sensor networks, and remote video 

systems [5]. Satellite systems typically use data from visible and near-infrared spectral bands, along with 

other multispectral inputs, to detect fire activity by analyzing temporal changes in landscape features [6,7]. 

Recent advances in artificial intelligence have enabled real-time data processing using deep learning models, 

leading to faster fire detection and response. This capability is critical for emergency management and 

firefighting operations, as it significantly reduces fire-related damage [3]. Machine learning techniques are 

increasingly employed for data analysis and knowledge discovery due to their ability to process large and 

complex datasets. These techniques reveal hidden patterns and extract key features, thereby improving fire 

prediction accuracy [7–9]. Consequently, forest fire susceptibility mapping has become a vital tool for risk 

management. Various software platforms such as ENVI 6.0, Global Mapper 25.1, eCognition 10.4, ERDAS 

IMAGINE 16.8, and particularly Google Earth Engine (GEE) 7.3 are widely used for such analyses, with 

GEE being especially suitable for large-scale applications [10]. The application of deep learning to wildfire 

prediction has gained significant momentum, demonstrating strong performance across numerous tasks [11–

14]. Analyses of remote sensing data show that image-based data is the most frequently used and particularly 

well-suited for deep learning algorithms [15].  

 

Artificial intelligence-based approaches have proven effective for both predicting and monitoring forest fire 

events [16]. A variety of machine learning and deep learning models including neural networks, 

classification and regression trees, Random Forest, Support Vector Machine, Deep Neural Networks, and 

XGBoost have been developed for forest fire prediction under diverse environmental conditions. These 

models have been applied across regions in Asia [17], Europe [18], North America [19], and Brazil, 

especially in the southeastern and central-western regions [20]. Despite these advancements, there remains 

a pressing need for targeted research in highly vulnerable areas, such as the Triunfo do Xingu Environmental 

Protection Area (EPA) in Pará, Brazil. According to the National Institute for Space Research (INPE), this 

region is the most deforested and fire-prone conservation unit in the Legal Amazon (INPE, 2023). This study 

aims to propose an effective forest fire prediction model that integrates the strengths of the Decision Tree 

(DT) and VGG16 models through an ensemble approach, thereby enhancing classification and prediction 

accuracy. Features extracted using the VGG16 architecture are optimized via the Binary Gray Wolf 

Optimizer. These optimized features are then processed by individual classifiers, whose outputs are 

combined through a voting mechanism to produce the final prediction.  

 

The proposed Hybrid Forest Fire Prediction (HF2P) strategy is applied to develop a susceptibility model for 

forest fires in South Carolina, USA, with the objective of forecasting the spatial expansion of high-risk fire 
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zones. The remainder of this paper is structured as follows: Section 2 outlines the problem and proposed 

methodology, Section 3 reviews related literature on forest fire prediction techniques, Section 4 presents the 

HF2P methodology, Section 5 presents the experimental results, followed by a discussion of their 

significance in Section 6. Section 7 offers concluding remarks, while Section 8 outlines directions for future 

research. 

2. Problem Definition of wildfire and Suggested Solution 
Wildfires have become an increasingly prevalent and destructive force, posing serious threats to ecosystems, 

human lives, and economies across the globe. In recent years, both the frequency and severity of wildfire 

events have escalated, leading to substantial and, in many cases, unprecedented losses. Figure 1 illustrates 

the distribution of major wildfires by continent and decade since 1950 [16], revealing a significant rise in 

fire incidents—particularly within major industrialized nations. Figure 2 presents projected global changes 

in wildfire activity under two climate scenarios: RCP 2.6 and RCP 6.0, where RCP (Representative 

Concentration Pathway) denotes greenhouse gas concentration trajectories used to model future climate 

conditions. The projections indicate that, by the end of the 21st century, the likelihood of large-scale 

wildfires may increase by a factor ranging from 1.31 to 1.57 [16]. Notably, even under the lowest emissions 

scenario (RCP 2.6), a substantial increase in the frequency and intensity of catastrophic wildfires is 

anticipated. Figure 3 shows the global annual average fire density per square kilometer for the period 2000–

2020 [16]. The data suggests that nearly every vegetated region around the world experiences free-burning 

fires at some point during the year, underscoring the widespread and persistent nature of the wildfire threat. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1, The number of major wildfires by continent and decade since 1950 

Figure 2, The global change in wildfire events under RCP=2.6 and RCP=6.0   
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Wildfires are among the most devastating natural disasters, causing extensive ecological degradation, 

significant economic losses, and posing serious risks to human life. Accurate wildfire prediction is essential 

for enabling early intervention and implementing effective firefighting strategies. However, traditional 

wildfire prediction methods are hindered by several limitations that compromise their reliability. These 

limitations stem from factors such as insufficient data availability, reliance on outdated modeling techniques, 

limited adaptability to changing climate conditions, and inefficiencies in real-time forecasting. Conventional 

wildfire prediction models typically depend on empirical formulas, statistical analyses, and historical fire 

records. While these methods have yielded useful insights, they often fail to capture the complex, dynamic, 

and nonlinear behavior of wildfire events. Moreover, the escalating influence of climate change has altered 

fire behavior patterns, rendering many historical models inadequate for predicting extreme or atypical fire 

events. This paper examines the key limitations of traditional wildfire prediction techniques and evaluates 

their implications for disaster preparedness and response efforts. By critically analyzing the weaknesses of 

these conventional approaches, the study lays the groundwork for advancing wildfire forecasting methods. 

It emphasizes the potential of integrating deep learning and machine learning techniques with satellite 

imagery to enhance prediction accuracy and responsiveness in the face of evolving wildfire risks. 

 

3. Related Works 
A substantial body of research has investigated the application of advanced machine learning (ML) and 

artificial intelligence (AI) techniques in enhancing wildfire prediction and risk assessment, thereby 

contributing to the development of more effective wildfire management strategies [21–23]. Numerous 

algorithms and predictive models have been proposed for forest fire risk evaluation, reflecting a dynamic 

and rapidly growing area of study. These methodologies can generally be grouped into three primary 

categories. The first category consists of physically based models, which employ mathematical formulations 

to simulate wildfire ignition, spread, and propagation by modeling the spatial distribution of combustible 

materials [24–26]. While these models can produce highly accurate fire spread maps, they require precise, 

location-specific input data—such as fuel characteristics and terrain information—that can be challenging 

and costly to obtain, especially across large or remote areas [19],[22]. The second category includes bivariate 

statistical methods such as Weight of Evidence (WoE), Evidential Belief Function (EBF), and Frequency 

Ratio (FR) models [27]. These approaches evaluate the statistical relationships between individual 

environmental variables and historical fire occurrences to produce weighted susceptibility maps. The 

weighted layers are then integrated to generate a final wildfire susceptibility map. However, the predictive 

Figure 3, Annual average fire density observed per Km2 for the period 2000–2020 
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accuracy of these models is often limited, particularly in regions with complex or heterogeneous 

environmental conditions. The third category comprises machine learning techniques, which fundamentally 

differ from bivariate approaches by incorporating both fire-affected and unaffected areas into the modeling 

process [17],[28]. This group includes a wide range of advanced algorithms, supported by developments in 

remote sensing, geographic information systems (GIS), and data science. Algorithms such as logistic 

regression, support vector machines (SVM), random forests, decision trees, and neuro-fuzzy systems have 

enabled the creation of more flexible and accurate predictive models [28]. The growing availability of open-

source platforms has also accelerated the use of deep learning for environmental modeling and natural 

hazard assessment [29]. Deep learning models are particularly beneficial due to their ability to detect 

complex spatial patterns, which can enhance prediction accuracy. However, their application in wildfire 

susceptibility modeling is still in the early stages, and further empirical research is needed to assess their 

generalizability and performance across different environmental contexts. 

Among emerging techniques, ensemble methods show significant promise for improving wildfire prediction 

performance [30–32]. For instance, a recent study in [1] proposed a transformer-based time series 

forecasting model to enhance wildfire prediction accuracy at local scales. To identify relevant literature, an 

initial keyword search was conducted using terms such as "Fire Detection," "Computer Vision," "Machine 

Learning," "Image Processing," and "Deep Learning." A secondary search focused on fire suppression 

technologies, combining terms like "Fire Extinguishing" with "UAV" (Unmanned Aerial Vehicle) and 

"UGV" (Unmanned Ground Vehicle). Figure 4 offers a visual overview of the selected research domains 

and their distribution, while table 1 provides a summary of key studies related to fire detection. 

A recent study proposed a novel method integrating explainable AI with feature engineering to enhance 

wildfire prediction models [62]. This research evaluated a variety of machine learning algorithms for both 

classification and regression tasks, finding that XGBoost was particularly effective in classifying wildfire 

types, while the Random Forest regression model excelled in estimating the extent of burned areas. The 

incorporation of explainable AI techniques facilitated greater model interpretability, allowing for the 

identification of key predictive features and enhancing transparency in the process. Moreover, an innovative 

approach using Graph Neural Networks (GNNs) has been developed for global wildfire prediction [63]. 

This method tackled common challenges such as incomplete oceanic data and long-range temporal 

dependencies in meteorological variables by transforming global wildfire and climate data into a graph-

based structure. The hybrid model, which combined Graph Convolutional Networks (GCNs) with Long 

Short-Term Memory (LSTM) networks, achieved superior predictive performance while also enhancing 

interpretability by uncovering spatial clusters linked to wildfire occurrences and highlighting critical 

contributing factors. 

 
 Figure 4, Research Selected Areas 
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Paper Published 

year 

Methodology Dataset Accuracy Advantages Disadvantages 

[33] 2022 Transfer 

learning 

47,992 

images 

Recognition 

accuracy of 79.48% 

through using 

ResNet50 model. 

Preventing and controlling 

large-scale forest fires early 

 

Low accuracy  

[34] 2022 YOLOv5 and 

Efficient Det 

2976 

images 

The average 

accuracy of the 

suggested model 

for forest fire 

exploration reached 

87%. 

Using weighted fusion to get 

around the problems with 

hand feature extraction and 

improve the accuracy of 

detecting forest fires 

 

Limited dataset 

[35] 2022 YCbCr and 

correlation 

coefficient 

11 videos Achieved precision 

of 95.87% and 

accuracy of 97.89 

on fire detection. 

use a correlation coefficient 

and a rule-based multi-color 

space to identify forest fires 

effectively. 

 

Unsatisfactory 

Regional 

Generalization 

 

[36] 2021 Squeeze Net 11,456 

images 

obtained 93% 

accuracy. 

determining whether a fire is 

present by first dividing up 

all regions that resemble 

fires, and then going through 

the classification module. 

Impact of Climate 

Change 

[37] 2021 CNN 2100 

images 

Achieved a 

classification 

accuracy of 95%. 

attempting to use CNN to 

extract and categorize 

picture information for fire 

detection. 

 

Despite its 

effectiveness, the 

approach 

presented in this 

paper was 

evaluated using a 

relatively small, 

manually curated 

dataset. 

[38] 2021 SVM data 

obtained 

from 

USGS 

website 

99.21% of accuracy 

on fire detection 

and value precision 

about 98.41%. 

use SVM to detect forest 

fires on LANDSAT pictures. 

 

High Computational 

Requirements 

[39] 2020 Automatic 

gain 

control 

algorithm 

12,000 

frames 

The proposed 

approach achieved 

better situation 

awareness when 

compared to 

existing methods. 

Using data-driven, near-real-

time fire monitoring and 

detection using thermal 

infrared sensing. 

Low accuracy  

[40] 2020 Simple linear 

iterative 

clustering 

37 

images 

attained an overall 

accuracy of over 

99% on fire 

damage 

assessments. 

constructing an 

unsupervised change 

detection framework to aid in 

the evaluation of wildfire 

damage by combining 

prefire PS data with post-fire 

VHR images. 

Limited manually 

creates dataset 

Table 1, Previous fire detection studies 
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[41] 2022 Deep CNN 22 tiles of 

Landsat-

8 

images 

97.35% overall 

accuracy 

identifying the fire's origin in 

order to detect forest fires 

early. 

Excessive 

computational 

demands 

 

[42] 2022 FCOS 11,681 

images 

Attained 89.34% 

accuracy 

identifying forest fires 

instantly and provide 

firefighting support. 

Inadequate 

Consideration of 

Human Factors 

[43] 2022 MTL 6595 

images 

Achieved 98.3% 

accuracy 

addressing issues with weak 

small-target recognition and 

numerous missed and 

erroneous detections in 

intricate forest settings. 

Poor 

Generalization 

Across Different 

Regions 

[44] 2022 R-CNN 8000 

images 

accuracy of 93.65% 

and a precision of 

91.85% 

dividing video frames into 

two groups (fire and no-fire) 

based on whether a fire is 

present or not, as well as the 

segmentation technique 

applied to the detection and 

segmentation of forest fires 

that are just beginning. 

High Requirements 

for Computing 

 

[45] 2021 Non-sub-

sampling 

contourlet 

transform 

and visual 

saliency 

NA It was asserted that 

the fusion results of 

the proposed 

method 

demonstrated 

enhanced clarity 

and contrast, while 

preserving a 

greater number of 

image features. 

constructing a network 

monitoring system for solar-

blind UV signals using 

machine vision. 

Difficulty in Real-

Time Adaptation 

[46] 2021 R-CNN, 

Bayesian 

network, and 

LSTM 

81,810 

images 

accuracy of 97.68% increasing the accuracy of 

fire detection in comparison 

to previous video-based 

techniques. 

High Processing 

Power Needs 

 

[47] 2021 Vision 

transformer 

500 

images 

97.7% F1-score Detecting and segmenting 

them early to anticipate their 

spread and aid in battling 

fires 

Limited dataset 

[48] 2020 Artificial bee 

colony 

algorithm-

based 

color space 

2000 

images 

The evaluation 

yielded a mean 

Jaccard index of 

0.76 and a mean 

Dice index of 0.85. 

using color space for forest 

fire detection. 

High Requirements 

for Computing 

 

[49] 2020 Deep CNN 4000 

images 

94.6% F-score Identifying fire as soon as 

feasible 

High Processing 

Power Needs 

 

[50] 2022 CNN and 

vision 

transformers 

48,010 

images 

Accuracy about 

85.12% on wildfire 

classification and 

F1-Score of  99.9%  

identifying wildfire early on. 

 

Inability to 

Accurately Model 

Complex Fire 

Behavior 
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[51] 2021 CNN 37,016 

images 

average IoU higher 

than 70% 

Sentinel-2 imagery was 

used to build an automated 

framework for active fire 

detection. 

Limited Predictive 

Accuracy 

[52] 2023 DCNN and 

BPNN 

7690 

images 

84.37% accuracy creating a better DCNN 

model to predict the risk of 

forest fires. putting the 

BPNN fire algorithm into 

practice to determine the 

delay rate and processing 

speed of video images. 

Challenges with 

Integrating Human 

and Environmental 

Factors 

[53] 2023 DeepLabV3+ NA 94.26% accuracy, 

94.04% recall, and 

89.51% mIoU. 

Introducing Defog 

DeepLabV3+ for accurate 

flame segmentation and 

cooperative defogging. 

suggesting DARA to improve 

the extraction of features 

connected to flames. 

Poor 

Generalization to 

Different Regions 

[54] 2023 Transfer 

learning 

1452 

images 

99.32% accuracy. A forest fire dataset was 

used to test and evaluate 

various convolutional neural 

network (CNN) models, 

incorporating transfer 

learning. Support Vector 

Machines (SVM) and 

Random Forest (RF) 

classifiers were applied for 

detection, while networks 

were trained and tested 

using both random and 

ImageNet-pretrained 

weights. 

High Requirements 

for Computing 

 

[55] 2023 FuF-Det 

(encoder–

decoder 

transformer) 

14,094 

images 

a fire spot detection 

rate of 78.69%. 

AAFRM was designed with 

positional features in mind. 

RECAB construction to 

preserve fine-grained firing 

point information. Adding CA 

to the detection head to 

increase the precision of 

localization. 

Limited Predictive 

Accuracy 

[56] 2023 YOLOv5 3000 

images 

an mAP@0.5 of 

84.56%. 

The transformer module is 

integrated into the feature 

extraction network of 

YOLOv5, with the Channel 

Attention (CA) mechanism 

positioned before the 

YOLOv5 head. To enhance 

multi-scale feature fusion, 

the model's head 

incorporates the Adaptive 

Spatial Feature Fusion 

(ASFF) technique. 

Computational 

Limitations 
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[57] 2023 Ensemble 

learning 

1900 

images 

95.79% accuracy An ensemble model is 

proposed for stacking, 

utilizing pre-trained models 

as base learners for feature 

extraction and initial 

classification. A Bi-LSTM 

network is employed as a 

meta-learner for the final 

classification step. 

Limited Real-Time 

Adaptability 

[58] 2023 YOLOv5s 5250 

infrareds 

images 

an mAP@0.5 of 

0.907. 

YOLOv5s-seg-based 

FFDSM is being proposed, 

with ECA and SPPFCSPC 

modules added to improve 

feature extraction and fire 

detection precision. 

Inconsistent Model 

Validation 

[59] 2023 Deep 

ensemble 

learning 

204,300 

images 

NA introducing a deep 

ensemble neural network 

model that makes use of 

RetinaNet, YOLOv2, 

YOLOv3, and Faster R-

CNN. 

Inadequate Fire 

Spread Modeling 

[60] 2023 CNN 1900 

images 

accuracy of 97.63% 

and an F1-score of 

98.00%. 

putting forward a CNN 

architecture-based forest fire 

detection technique. utilizing 

separable convolution layers 

to enable real-time 

applications, minimize 

computational resources, 

and detect fires instantly. 

Lack of Multi-Scale 

Integration 

[61] 2023 Ensemble 

learning 

51,906 

images 

accuracy rates of 

99.62% 

Introducing CT-Fire, a 

method for detecting forest 

fires in aerial and ground 

photos that combines the 

vision transformer Efficient 

Former v2 with deep CNN 

RegNetY. 

High Computational 

Requirements 

 

 

The proposed forest fire prediction strategy (HF2P) aims to address or mitigate the challenges outlined 

above. This is achieved by incorporating evidence from both deep learning (DL) and machine learning (ML) 

models, thus leveraging the advantages of both methodologies. In HF2P, VGG16, an efficient DL model, is 

employed for feature extraction, while a modified VGG16 and Decision Tree (DT) are combined as effective 

ML and DL techniques to enhance prediction accuracy. HF2P utilizes a sufficient number of training images 

and applies a feature selection methodology (BGWO) to identify the most informative features. This 

approach facilitates faster training and testing of the model, while also reducing the risk of overfitting. A 

binary instance of the Gray Wolf Optimizer (GWO) is selected as the feature selector, and the final 

prediction is determined using a voting technique, thereby improving the accuracy of the final decision. 
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4. The Proposed Forest Fire Prediction Strategy (HF2P) 

This section presents a detailed overview of the proposed Hybrid Forest Fire Prediction Strategy (HF2P). 

The HF2P framework is structured into two primary sequential phases: (i) the Pre-Processing Phase (PP) 

and (ii) the Ensemble Classification Phase (ECP), as illustrated in Figure 5. In the Pre-Processing Phase, 

the input dataset is first assessed for class imbalance and, if necessary, subjected to data augmentation or 

balancing techniques. This phase begins with the removal of noisy or inconsistent entries to ensure data 

integrity and facilitate accurate subsequent analyses. Following this data cleaning step, feature extraction is 

performed based on fire incidence location data. Relevant environmental and topographical attributes at the 

fire sites are systematically extracted to capture the conditions associated with fire occurrences. These 

extracted features are then analyzed using comprehensive data mining techniques to uncover patterns, 

correlations, and trends that provide insights into wildfire behavior and the factors influencing fire ignition 

and spread. For image-based data, the VGG16 deep learning model, a pre-trained convolutional neural 

network, is utilized to extract high-level spatial features from satellite or aerial imagery [41].  

 

In the subsequent feature selection stage, the study applies a bio-inspired optimization algorithm, 

specifically the Gray Wolf Optimization (GWO) technique, to identify and retain only the most influential 

and informative variables related to forest fire occurrence. The final prediction is conducted in the Ensemble 

Classification Phase, where both machine learning and deep learning models are integrated. An ensemble 

voting mechanism is utilized, combining the outputs of a Deep Learning Classifier (DLC) and a Decision 

Tree Classifier (DTC) to enhance predictive accuracy and model robustness. A comprehensive workflow of 

the HF2P framework is elaborated in the following subsections. This includes the initial risk analysis, feature 

extraction for both fire and non-fire (random) points, and the selection of key predictive variables for 

effective forest fire occurrence forecasting. 

 

 

 

4.1.Utilizing Deep Learning Pre-Trained VGG16 Model for Feature Extraction 

The feature extraction process aims to transform raw data into new features that enhance the performance 

of the machine learning system. The model employed is Visual Geometry Group 16 (VGG16), a 

convolutional neural network architecture first introduced in [30]. The VGG16-based CNN model utilizes 

input images of 224x224 pixels and consists of 16 weight layers, including three fully connected layers and 

13 convolutional layers. The convolutional layers employ a 3x3 kernel size, 1-pixel padding, and use the 

Rectified Linear Unit (ReLU) activation function. Five max-pooling layers with a 2x2 pixel filter and two 

strides come after spatial pooling. Before sending output to layers that were fully connected, one flattened 

layer was added. Additionally, the last fully connected layer employed 1,000 output classes and the softmax 

activation function. A sizable dataset was used to train VGG16 on ImageNet. This model had 138,357,544 

trainable parameters in total.  Using the VGG-16 model, we eliminate the output layer—which is used for 

classification—in order to extract characteristics from an image. After that, a representation of the image is 

created using the remaining layers, which includes details about its characteristics including shape, color, 

and texture. 
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Figure 5, the proposed Forest Fire Prediction Strategy (F2P) stages 
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4.2.Feature Selection based on Bio-Inspired Gray Wolf Optimization (GWO) 

Feature selection aims to identify the most relevant characteristics in a dataset that contribute effectively to 

classification tasks, based on criteria such as consistency, originality, and significance. This step is crucial 

in feature engineering, as it determines which features will be used to optimize model performance. By 

selecting only the most informative features, it reduces the dimensionality of the data and enhances the 

efficiency of the deep learning model. In this study, the Gray Wolf Optimization (GWO) algorithm, a bio-

inspired optimizer, is employed for feature selection [31]. The binary values (0 and 1) are used to define the 

search space, determining which features to include in the model. Consequently, meta-heuristic optimizers 

that typically operate with continuous values must be adapted to handle binary outputs corresponding to 

selected features. Each feature in the n-feature set is assigned a value of 0 or 1, indicating whether it will be 

used in the classification process. 

4.3.Classification Phase using Deep Learning and Machine Learning 

HF2P classification phase consists of a pre-trained deep learning network that was used as the first classifier 

and, in the second instance, a decision tree classifier is used to form a combination which forms an ensemble 

classification procedure. The established hybrid deep learning and machine learning ensemble method is 

well known for its ability to increase accuracy by pooling predictions from several models [32].  

 

4.3.1. The modified VGG16 Deep Learning Model 

In this section VGG 16 CNN model serves as the first classifier to assist the machine learning classifier. 

Reusing models that have already been pre-trained on benchmark datasets, such ImageNet and image 

recognition tasks, is known as transfer learning. These models have been trained on over a million images 

and can classify images into 1000 classes and it is reusable as a starting point for similar problems [64].  

The first classifier is the VGG16 Deep Learning Model which achieved high accuracy with the best five 

tests using ImageNet which contains more than 14 million image datasets with 1000 classes [65]. In addition 

to that VGG16 gives a lower error rate than all other VGG models. The VGG16 architecture, which consists 

of six blocks and 16 layers overall. The first five blocks carry out pooling and convolution operations. Three 

dense or fully connected layers, comprising two layers of neurons and a final layer of classes, make up the 

final block. ImageNet weights are used to train VGG16 on 14 million images from 1000 classes. 

Two convolution layers with 64 channels of 3 × 3 kernels with padding of the same make up the first 

convolution block, which is followed by a pooling layer. There are two values for the padding parameter: 

same and valid. While the same does not permit modifications in the spatial domain, the valid does. The 

pooling layer chooses a maximum pool size of 2 × 2 and a stride of 2 × 2. The next two convolution layers 

have a 3 × 3 kernel with max pool operation and 112 × 112 of 128 channels. Then the next three layers of 

the architecture are 28 × 28 with 512 channels of 3 × 3 kernel and the same padding, followed by three 

convolution layers of 56 × 56 having 256 channels of 3 × 3 kernel and the same padding. The next three 

layers are 14 × 14 with 512 channels and the same padding. The following two layers are 7 × 7 with 512 

channels, the same padding, and max pool functionality. The final three layers are dense or fully connected 

layers after all of the convolution layers have been learned. In order to classify the input images, the first 

dense layer has 4096 neurons with activation function, the second dense layer functions similarly, and the 

final dense layer has 1000 channels. Some modifications have been applied on the standard VGG 16 model 

by utilizing the feature selection beside modifying the dense layer by replacing the output layer of 1000 

class with the two-class output layer to fit the binary application. As illustrated in figure 6, it can be said that 

the trained VGG 16 model has been reused by freezing the first layers and removing the top fully connection 

layers and the output layer. Anew five fully connected layers are then added. The redesigned VGG 16 can 

be divided into two sections: the trainable section, which displays the final five layers that need to be trained, 
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and the frozen section, which displays the initial layers and weights. Only the features that have been 

selected by the BLSO are embedded into the VGG 16 network which reduces the network size and therefore 

reduces the complexity and processing time. The rectified linear function (relu) was employed as an 

activation function in each fully connected layer. Since there are two classes for the prediction process, the 

output layer consists of two neurons. 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.2. Decision Tree Machine Learning Classifier 

In this section Decision Tree ML model serves as the second classifier. The following factors make decision 

tree (DT) a popular choice for predictive modeling. DT is a non-parametric approach to supervised learning 

that is employed in regression and classification which make it easy to interpret and comprehend. It is 

feasible to use statistical tests to validate a model. This enables the model's dependability to be taken into 

consideration. DT capable of managing category and numerical data [66].  DT tends to require little to no 

adjustments which makes it quite simple to use. Assuming that DT learned in a roughly balanced manner, 

which is what most heuristics aim to guarantee, it can be learned very quickly. Usually, learning rises as O 

(mn log n) where, n the number of rows and m the number of columns in the data table. Prediction implies 

O (log n) tests under the same assumption, which usually translates to a few dozen CPU operations per 

instance [32]. Through the prediction procedure using DT the selected features using GWO after extracted 

them using the VGG16 feature extractor are embedded into the tree structure. To classify data according to 

a set of criteria derived from the features or attributes of the data as shown in figure 7. Then the final decision 

will be embedded into the voting stage to determine the final prediction from both the VGG16 model and 

the DT model.  

 

 

 

4.3.3. Voting Technique 

In this subsection the output classification decisions from the two considered classifiers DT and the deep 

neural network modified VGG 16 model will be merged to get the final decision of the monkeypox 

diagnosing process. The final decision will rely on the DT Classifier decision 𝐷𝐷𝑇 multiplied by its weight 

𝜉1and the Deep neural network decision 𝐷𝐷𝑁𝑁 multiplied by its weight 𝜉2 as explained in (1). 

Decision = 𝜉1 𝐷𝐷𝑇 +𝜉2 𝐷𝐷𝑁𝑁  (1) 

 

 

 

 

 

Figure 6, The modified VGG 16 Structure 
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5. Testing the proposed Accurate Forest Fire Prediction (HF2P) Strategy  

In this section the proposed methodology will be evaluated through different metrics. The preprocessing 

phase (PP) and the Ensemble Classification Phase (ECP), as described in the preceding section, are the two 

fundamental stages of the HF2P strategy.  The preprocessing phase applied in two stages; in order to achieve 

the best performance, features are first retrieved using the VGG16. The feature selection phase, which uses 

the BGWO to choose the most significant characteristics. The suggested ensemble classification process is 

used to accurately anticipate forest fires during the second phase, known as ECP. A training set is used to 

carry out the learning process. The testing set is then used to evaluate the proposed model's efficacy. Table 

2 displays the tuning parameters that the feature selector (BGWO) uses and their values. 

 

 

 
Parameter Description Used value 

𝜇1 weighting factor for the 
diagnosis accuracy 

0.9 

𝜇2 weighting factor for the 
chromosome weight 

0.1 

n Number of wolves 5 

t Number of iterations 100 

Used Ensemble classification 
techniques 

 VGG16 and DT 

 

 

 

Table 2, Tuning parameters used by the proposed IBGWO 
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5.1.Dataset Description  

This study integrates a diverse range of geographic and environmental data sources to enhance the analysis 

of wildfire susceptibility across various locations in South Carolina (SC). Key environmental features—

such as state boundaries, roads, rivers, and water bodies (e.g., ponds or lakes)—were obtained from publicly 

available datasets as cited in [67]. The National Land Cover Dataset (NLCD) [68] was also utilized, 

providing accurate and georeferenced land cover classifications and land cover change data for the region. 

To ensure spatial precision and contextual relevance, these raster layers were carefully clipped using the SC 

state shapefile. Additionally, the Normalized Difference Vegetation Index (NDVI) was integrated to assess 

vegetation health and density, serving as a critical factor for wildfire risk analysis [69]. A visual sample of 

the compiled dataset is shown in Figure 8(a). Wildfire incident point data for the year 2023 was provided 

by the South Carolina Forestry Commission and was processed within Google Earth Engine (GEE). To 

ensure a balanced dataset, an equal number of randomly generated non-fire points were created within GEE 

across the SC region. Elevation data were sourced from the Shuttle Radar Topography Mission (SRTM), a 

global-scale digital elevation initiative. The SRTM V3 (SRTM Plus) product, distributed by NASA’s Jet 

Propulsion Laboratory (JPL), offers a spatial resolution of approximately 30 meters (1 arc-second) [70]. 

Relevant raster layers were further retrieved using GEE, as illustrated in Figure 8(b) [71]. GEE has been 

widely used for various geospatial applications, including agriculture monitoring, forest and vegetation 

studies, ecosystem assessments, and land cover classification, underscoring its versatility and reliability as 

a data processing platform [72], [73]. After data acquisition, an exploratory data analysis (EDA) phase was 

conducted as part of the preprocessing workflow. This phase involved noise reduction, handling missing 

data, and transforming categorical variables into numerical formats suitable for machine learning models. 

Feature extraction was performed using wildfire incident locations to derive key environmental and 

topographical attributes. These features were then analyzed to identify patterns, trends, and correlations that 

influence wildfire behavior and the underlying drivers of fire occurrence. The dataset was split into training 

(70%) and testing/validation (30%) subsets. 

 

   
 

 

(a) Samples of Normalized Difference Vegetative Index (NDVI) 

    
 

(b) Raster layers created in GEE (https://earthengine.google.com, accessed on 24 January 2025) 

 

 

 

5.2.Evaluation Metrics 

The following experiments will evaluate four key metrics: error, precision, accuracy, and sensitivity. The 

results of the application will be further assessed by measuring recall, F-measure, precision, accuracy, error, 

Figure 8, Samples of collected dataset 
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and runtime. A confusion matrix, as presented in Table 3, is utilized to derive the values for these metrics. 

Various distinct formulas are applied to summarize the confusion matrix, as outlined in Table 4 [74, 75].  

 

Table 3, Confusion matrix. 

  Predicted label   

Positive  Negative  

Known label Positive  True positive (XP) False Negative (YN) 

Negative  False positive (YP) True Negative (XN) 

 

Table 4, Confusion matrix formulas. 

Measure Formula intuitive interpretation 

Accuracy (A) (XP + XN)

𝑋𝑃 + 𝑋𝑁 + 𝑌𝑁 + 𝑋𝑁
 

The proportion of correctly predicted cases 

Error (E) 1-Accuracy The proportion of predictions that are found to be 
inaccurate. 

Precision (P) 𝑋𝑃

𝑋𝑃 + 𝑌𝑃
 

The proportion of true positive predictions. 

Recall / Sensitivity (R) 𝑋𝑃

𝑋𝑃 + 𝑌𝑁
 

the proportion of positively tagged cases that were 
expected to be positively labeled. 

F-measure 2*PR/(P+R) Weighted harmonic mean of recall and precision 

 

5.3.K-fold cross-validation 

K-fold cross-validation enhances model reliability, mitigates overfitting, and ensures the model’s 

generalizability [76]. In this method, the dataset is divided into k subsets, with k-1 subsets used for training 

and the remaining subset used for validation. This process is repeated k times, with each subset serving as 

the validation set once. In this study, 5-fold cross-validation was applied, and the average of the results from 

the five folds was computed. The representation of the k-fold cross-validation procedure is provided in 

equation (2). 

                                    k-fold cross validation = 
1

𝑘
∑ 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑒 𝑚𝑒𝑡𝑟𝑖𝑐 𝑖

𝑘
𝑖=1               (2) 

 

5.4.Testing the proposed HF2P Strategy 

In this subsection, the proposed HF2P strategy will be evaluated using a voting ensemble prediction method, 

which combines the modified VGG16 model with the Decision Tree (DT). Initially, features are extracted 

from the images in the dataset using the VGG16 model. These features are then reduced using Binary Gray 

Wolf Optimization (BGWO) to select the most significant features, thereby simplifying calculations and 

improving classification accuracy. To assess the effectiveness of the HF2P strategy, it will be compared with 

state-of-the-art ensemble methods, and the DT classifier will also be evaluated independently against HF2P. 

A summary of recent ensemble prediction methods used for evaluation is provided in Table 5. 
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Table 5, The most contemporary methods for evaluating HF2P. 

 
Ensemble prediction technique Description 

GWO-XGBoost model [31] A fire growth rate warning map for Liangshan Prefecture in Sichuan 
Province, China, generated using the ensemble model (GWO-
XGBoost). 

Ensemble Transfer Learning [32] An Ensemble Transfer Learning method is presented which 
includes a fusion of ResNet-50 and VGG-19. 

Time Series Prediction [77] This study forecasts power consumption using a novel ensemble 
method that integrates three time series models: RNN, LSTM, and 
GRU. 

Ensemble two DL models [78] This method incorporates VGG16 and ResNet50 architectures. 

Ensemble three DL models [79] The authors employed the AlexNet, ResNet-50, and VGG-16 
models. 

 

Voting between DT and modified VGG16 processed according to (8). To explain how the classifiers’ 

weights are calculated a test sample is presented below: 

 

 

 

 

 

 

 

By applying (8):  

As 𝜉1 + 𝜉2 = 1 & from a previous test sample infection probability: 𝐷𝑉𝐺𝐺 16 = 0.89  , 𝐷𝐷𝑇 = 0.92 

then to calculate the weights: 0.89 x + 0.92 x = 1 →⸫ x= 
1

1.81
=0.55 

𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑉𝐺𝐺 16: 𝜉1 =  
0.89

1.81
= 0.49  

𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓  𝐷𝑇 ∶ 𝜉2 =  
0.92

1.81
= 0.51  

 

 

The final Fire Probability = 0.6 * 0.49 + 0.3 * 0.51= 0.447 

The final Non fire Probability = 0.4 * 0.49 + 0.7 * 0.51= 0.553 

⸫Final decision is → Non Fire case 

 

To evaluate the proposed HF2P strategy, the comparative study performed under the same conditions using 

the same feature extractor (VGG16) and the same feature selector (BGWO) using the prementioned dataset. 

Different ensemble prediction methods compared in terms of accuracy, error, precision, runtime, f-measure 

and recall. The evaluation for training results are shown in figures (9-14). It is clear that all the model's 

ability to predict the right label is improving progressively with increasing the number of epochs. 

According to the accuracy and error measurements in figures 9&10, the ensemble HF2P model outperformed 

innovative algorithms with the average of 4-fold cross-validation. As noticed in figures 11&12 despite of 

precision and recall, the proposed HF2P strategy demonstrates the best performance. Figure 13 illustrates 

the performance in terms of f-measure and it is clear that the proposed HF2P strategy presents superiority 

against other competitors. 

Despite the time-varying complexity of other rivals, the suggested HF2P strategy produces fast prediction 

VGG 16 (DL): 

Fire Probability = 0.6 

Non fire Probability = 0.4 

DT (ML) 

Fire Probability = 0.3 

Non fire Probability = 0.7 
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results consequently after the DT algorithm, as seen in figure 14. This is due to the fact that other approaches 

rely solely on deep learning models, which are known for being computationally expensive, requiring 

significant memory and resources, and imposing substantial time penalties. In contrast, the HF2P method is 

more user-friendly, time-efficient, and capable of handling various types of data. From the evaluation results 

shown in Figures (9-14), it is evident that the Decision Tree (DT) algorithm, when used independently, has 

limited predictive accuracy, despite its fast processing time. Furthermore, the ensemble time series algorithm 

in [77] fails to predict accurately, achieving a low accuracy of approximately 0.72. On the other hand, the 

ensemble of three deep learning models in [79] delivers good accuracy (around 0.8) when trained on 12,000 

images but is a time-consuming algorithm due to its complexity. The model complexity and computational 

time were improved in the GWO-XGBoost model [31]. As illustrated in Figures (9-14), the proposed HF2P 

strategy outperforms all other methods, demonstrating superior performance. 

 

  
Figure 9, the proposed HF2P Strategy compared with other 

approaches based on the average accuracy of 5-fold cross-

validation. 

Figure 10, the proposed HF2P Strategy compared with other 

approaches based on the average error of 5-fold cross-

validation. 

  
Figure 11, the proposed HF2P Strategy compared with other 

approaches based on the average precision of 5-fold cross-

validation. 

Figure 12, the proposed HF2P Strategy compared with other 

approaches based on the average Recall of 5-fold cross-

validation. 
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Figure 13, the proposed HF2P Strategy compared with other 

approaches based on the f- measure of 5-fold cross-validation. 

Figure 14, the proposed HF2P Strategy compared with other 

approaches based on the processing time of 5-fold cross-

validation. 

6. The significance of the work presented in this study 

Furthermore, the proposed HF2P strategy demonstrates strong generalizability, making it suitable for a wide 

range of forecasting applications across diverse domains. The dataset employed in this study captures the 

fundamental principles underlying the model’s utility and scalability. The approach can be effectively 

adapted for tasks such as variable prediction or item classification within specific fields. For instance, in 

business, the classification capability of the model can be applied to quality control processes, such as 

identifying defective products by categorizing items into "acceptable" and "defective" classes. In the energy 

sector, the strategy can support electrical load forecasting by classifying future energy demands into 

categories such as low, medium, and high. In biogas production, the model can be utilized to predict biogas 

yield based on key operational parameters like temperature and pH levels. The HF2P approach also holds 

promise in the field of economics, where it can be employed to forecast crude oil prices, evaluate business 

profits and losses at the end of a fiscal year, or estimate potential risks associated with specific economic 

policies. In agriculture, the model can assist in predicting crop yields, enabling better planning and resource 

allocation. Finally, the approach can be applied to weather forecasting, where it may be used to classify and 

predict meteorological parameters such as temperature, wind speed, or precipitation levels. 

 

7. Conclusion  

Forest Fires have become an increasingly prevalent and destructive force, posing significant threats to 

ecosystems, human lives, and economies worldwide. In recent years, the frequency and severity of these 

fires have increased, resulting in unprecedented losses. Artificial Intelligence (AI) has emerged as a 

promising tool in addressing this challenge. By leveraging data analysis and machine learning techniques, 

AI enables the identification of high-risk areas, the prediction of fire behavior, and the provision of early 

warnings. However, despite these advancements, wildfire prediction remains a complex and challenging 

task. While AI models, particularly deep learning and machine learning techniques, have shown great 

potential in forecasting forest fires, several obstacles hinder their effectiveness. The unpredictable nature of 

forest fires, influenced by a wide range of environmental factors such as temperature, humidity, wind speed, 

and vegetation type, makes it difficult to create highly accurate predictive models. In this paper, an attempt 

to promote the prediction of forest fires by combining evidence from deep learning and machine learning 

techniques. A Hybrid Forest Fires Prediction (HF2P) Strategy was introduced, which is based on an 

Ensemble Classification of Convolutional Neural Networks and Decision Tree Models. The proposed HF2P 
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employs VGG16 for feature extraction after removing the final dense layers form the model. Then, the most 

effective features are selected using GWO. The selected feature are then passed to two different predictors, 

namely; Deep Learning Classifier (DLC) and Decision Tree Classifier (DTC). The decisions provided by 

both predictors are then combined to provide the final forecast . An extensive set of images have been 

gathered and merged from multiple available online datasets. Experimental results have shown that the 

proposed HF2P outperformed recent prediction methods in terms of accuracy, precision, f-measure, recall, 

error and processing time. Its accuracy reached 88% using 12000 training images. 

 

8. Future work  

The use of artificial intelligence (AI) for forest fire prediction is an evolving area of research, with numerous 

promising avenues that can be explored to improve upon the methodology proposed in this paper. For 

illustration, (i) improve Data Collection and Integration, which can be accomplished by three aspects: multi-

modal data fusion, employing IoT and Remote Sensing, or providing better satellite coverage. The first 

aspect can be held by combining satellite imagery, weather data, social media feeds, sensor networks, and 

historical forest fires data to enhance predictive accuracy, the second can be done by deploying AI-powered 

drones and ground-based sensors to collect real-time environmental data, while the third can be satisfied by 

leveraging new satellite constellations such as hyperspectral imaging, for high-resolution wildfire 

monitoring. (ii) Employing advanced ML and AI techniques, which can be held by; employing transformers 

for more precise fire spread modeling as well as using Explainable AI (XAI) for making AI predictions more 

interpretable to help emergency responders understand risk factors. Reinforcement learning can also be 

applied by training AI models to simulate fire behavior and optimize firefighting strategies. (iii) Real-Time 

forest fires forecasting, which can be done by using AI-driven early warning systems. Hence, different 

models for fire prediction before ignition can be investigated using climate and vegetation conditions . 

Moreover, AI models can be implemented on local edge devices for instant risk assessment in fire-prone 

areas. 
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